Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies – BMC Medicine

  1. 1. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991 ; 9:641–50 .
  2. 2. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et alabama. minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position argument. Cytotherapy. 2006 ; 8:315–7.
  3. 3. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et aluminum. Multilineage likely of pornographic homo mesenchymal stem turn cells. science. 1999 ; 284:143–7 .
  4. 4. Friedenstein AJ. Precursor cells of mechanocytes. Int Rev Cytol. 1976 ; 47:327–59 .
  5. 5. Burdon TJ, Paul A, Noiseux N, Prakash S, Shum-Tim D. Bone marrow stem cell derived paracrine factors for regenerative medicine : current perspectives and therapeutic likely. Bone Marrow Res. 2011 ; 2011:1–14 .
  6. 6. Horwitz EM, Dominici M. How do mesenchymal stromal cells exert their curative benefit ? Cytotherapy. 2008 ; 10:771–4 .
  7. 7. Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells : environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 2013 ; 45, e54 .
  8. 8. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, et aluminum. Mesenchymal shank cells suppress lymphocyte proliferation in vitro and prolong skin transplant survival in vivo. Exp Hematol. 2002 ; 30:42–8 .
  9. 9. english K, French A, Wood KJ. Mesenchymal stromal cells : facilitators of successful transplant ? Cell Stem Cell. 2010 ; 7:431–42 .
  10. 10. Sharma RR, Pollock K, Hubel A, McKenna D. Mesenchymal stem or stromal cells : a reappraisal of clinical applications and fabricate practices. transfusion. 2014 ; 54:1418–37 .
  11. 11. Shi Y, Su J, Roberts AI, Shou P, Rabson AB, Ren G. How mesenchymal stem cells interact with tissue immune responses. Trends Immunol. 2012 ; 33:136–43 .
  12. 12. Munir H, McGettrick HM. Mesenchymal shank cells therapy for autoimmune disease : risks and rewards. Stem Cells Dev. 2015. [ Epub ahead of print ] .
  13. 13. Constantin G, Marconi S, Rossi B, Angiari S, Calderan L, Anghileri E, et aluminum. Adipose-derived mesenchymal stalk cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells. 2009 ; 27:2624–35 .
  14. 14. Gerdoni E, Gallo B, Casazza S, Musio S, Bonanni I, Pedemonte E, et aluminum. Mesenchymal stem cells effectively modulate infective immune answer in experimental autoimmune encephalomyelitis. Ann Neurol. 2007 ; 61:219–27 .
  15. 15. Marconi S, Bonaconsa M, Scambi I, Squintani GM, Rui W, Turano E, et aluminum. Systemic discussion with adipose-derived mesenchymal stem cells ameliorates clinical and pathological features in the amyotrophic lateral pass sclerosis murine model. neuroscience. 2013 ; 248C:333–43 .
  16. 16. Vercelli A, Mereuta OM, Garbossa D, Muraca G, Mareschi K, Rustichelli D, et alabama. Human mesenchymal stem turn cell transplant extends survival, improves drive performance and decreases neuroinflammation in shiner model of amyotrophic lateral sclerosis. Neurobiol Dis. 2008 ; 31:395–405 .
  17. 17. McCoy MK, Martinez TN, Ruhn KA, Wrage PC, Keefer EW, Botterman BR, et aluminum. autologous transplants of adipose-derived adult stromal ( ADAS ) cells afford dopaminergic neuroprotection in a model of Parkinson ’ sulfur disease. Exp Neurol. 2008 ; 210:14–29 .
  18. 18. Lin Y-T, Chern Y, Shen C-KJ, Wen H-L, Chang Y-C, Li H, et aluminum. Human mesenchymal stalk cells prolong survival and better motive deficit through trophic support in Huntington ’ s disease mouse models. PLoS One. 2011 ; 6:1–17 .
  19. 19. Gu W, Zhang F, Xue Q, Ma Z, Lu P, Yu B. Transplantation of cram marrow mesenchymal stalk cells reduces lesion volume and induces axonal regrowth of injure spinal anesthesia cord. Neuropathology. 2010 ; 30:205–17 .
  20. 20. Yang C-C, Shih Y-H, Ko M-H, Hsu S-Y, Cheng H, Fu Y-S. Transplantation of human umbilical cord mesenchymal stalk cells from Wharton ’ s jelly after complete transection of the rat spinal cord. PLoS One. 2008 ; 3, e3336 .
  21. 21. Wakabayashi K, Nagai A, Sheikh AM, Shiota Y, Narantuya D, Watanabe T, et alabama. transplant of human mesenchymal bow cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J Neurosci Res. 2010 ; 88:1017–25 .
  22. 22. Kokaia Z, Martino G, Schwartz M, Lindvall O. Cross-talk between neural stem cells and immune cells : the keystone to better brain animate ? Nat Neurosci. 2012 ; 15:1078–87 .
  23. 23. Uccelli A, Laroni A, Freedman MS. Mesenchymal bow cells for the discussion of multiple sclerosis and other neurological diseases. Lancet Neurol. 2011 ; 10:649–56 .
  24. 24. Drago D, Cossetti C, Iraci N, Gaude E, Musco G, Bachi A, et alabama. The stem cell secretome and its role in brain compensate. Biochimie. 2013 ; 95:2271–85 .
  25. 25. Ripoll CB, Flaat M, Klopf-Eiermann J, Fisher-Perkins JM, Trygg CB, Scruggs BA, et alabama. Mesenchymal ancestry bow cells have pronounced anti-inflammatory effects in the twitcher shiner model of Krabbe ’ south disease. Stem Cells. 2011 ; 29:67–77 .
  26. 26. Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, et aluminum. Safety and immunological effects of mesenchymal root cell transplant in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol. 2010 ; 67:1187–94 .
  27. 27. Yamout B, Hourani R, Salti H, Barada W, El-Hajj T, Al-Kutoubi A, et aluminum. Bone marrow mesenchymal shank cell transplant in patients with multiple sclerosis : a pilot analyze. J Neuroimm
    unol. 2010 ; 227:185–9 .
  28. 28. Dulamea A. Mesenchymal shank cells in multiple sclerosis – translation to clinical trials. J Med Life. 2015 ; 8:24–7 .
  29. 29. Bonab MM, Sahraian MA, Aghsaie A, Karvigh SA, Hosseinian SM, Nikbin B, et alabama. autologous mesenchymal stem cell therapy in progressive multiple sclerosis : an open label sketch. Curr Stem Cell Res Ther. 2012 ; 7:407–14 .
  30. 30. Connick P, Kolappan M, Patani R, Scott MA, Crawley C, He X-L, et alabama. The Mesenchymal Stem Cells in Multiple Sclerosis ( MSCIMS ) trial protocol and service line cohort characteristics : an open-label pre-test : post-test study with blind consequence assessments. Trials. 2011 ; 12:62 .
  31. 31. Llufriu S, Sepúlveda M, Blanco Y, Marín P, Moreno B, Berenguer J, et alabama. Randomized placebo-controlled phase II trial of autologous mesenchymal root cells in multiple sclerosis. PLoS One. 2014 ; 9, e113936 .
  32. 32. Suzuki M, McHugh J, Tork C, Shelley B, Hayes A, Bellantuono I, et alabama. direct brawn delivery of GDNF with human mesenchymal stem cells improves drive nerve cell survival and function in a informer model of familial ALS. Mol Ther. 2008 ; 16:2002–10 .
  33. 33. Glavaski-Joksimovic A, Virag T, Mangatu TA, McGrogan M, Wang XS, Bohn MC. Glial cellular telephone line-derived neurotrophic factor-secreting genetically modified human cram marrow-derived mesenchymal shank cells promote convalescence in a rat model of Parkinson ’ mho disease. J Neurosci Res. 2010 ; 88:2669–81 .
  34. 34. Moloney TC, Rooney GE, Barry FP, Howard L, Dowd E. Potential of rat bone marrow-derived mesenchymal root cells as vehicles for manner of speaking of neurotrophins to the parkinsonian rat brain. Brain Res. 2010 ; 1359:33–43 .
  35. 35. Dey ND, Bombard MC, Roland BP, Davidson S, Lu M, Rossignol J, et aluminum. genetically engineered mesenchymal stalk cells reduce behavioral deficits in the YAC 128 shiner mannequin of Huntington ’ s disease. Behav Brain Res. 2010 ; 214:193–200 .
  36. 36. Boison D. Engineered adenosine-releasing cells for epilepsy therapy : human mesenchymal root cells and human embryonic stem cells. Neurother J Am Soc Exp Neurother. 2009 ; 6:278–83 .
  37. 37. Ren G, Li T, Lan JQ, Wilz A, Simon RP, Boison D. Lentiviral RNAi-induced downregulation of adenosine kinase in homo mesenchymal root cell grafts : a novel position for capture control condition. Exp Neurol. 2007 ; 208:26–37 .
  38. 38. Peng H, Wen TC, Tanaka J, Maeda N, Matsuda S, Desaki J, et aluminum. cuticular emergence divisor protects neural cells in vivo and in vitro against transient forebrain ischemia- and free radical-induced injuries. J Cereb Blood Flow Metab. 1998 ; 18:349–60 .
  39. 39. Horita Y, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. Intravenous administration of glial cell line-derived neurotrophic divisor gene-modified homo mesenchymal stem turn cells protects against wound in a cerebral ischemia model in the adult rat. J Neurosci Res. 2006 ; 84:1495–504 .
  40. 40. Ikeda N, Nonoguchi N, Zhao MZ, Watanabe T, Kajimoto Y, Furutama D, et aluminum. Bone marrow stromal cells that enhanced fibroblast growth factor-2 secretion by herpes simplex virus vector improve neurological result after transeunt focal cerebral ischemia in rats. Stroke. 2005 ; 36:2725–30 .
  41. 41. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Kobune M, Hirai S, et aluminum. BDNF gene-modified mesenchymal shank cells promote functional recovery and reduce infarct size in the scab in-between cerebral artery occlusion model. Mol Ther. 2004 ; 9:189–97 .
  42. 42. Miki Y, Nonoguchi N, Ikeda N, Coffin RS, Kuroiwa T, Miyatake S. Vascular endothelial emergence component gene-transferred bone marrow stromal cells engineered with a herpes simplex virus type 1 vector can improve neurological deficits and reduce infarct bulk in rotter brain ischemia. Neurosurgery. 2007 ; 61:586–95 .
  43. 43. Bang OY, Lee JS, Lee PH, Lee G. Autologous mesenchymal shank cell transplant in stroke patients. Ann Neurol. 2005 ; 57:874–82 .
  44. 44. Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, et alabama. intravenous government of car serum-expanded autologous mesenchymal shank cells in stroke. Brain. 2011 ; 134:1790–807 .
  45. 45. Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY, et alabama. A long-run follow-up cogitation of intravenous autologous mesenchymal stem cell transplant in patients with ischemic stroke. Stem Cells. 2010 ; 28:1099–106 .
  46. 46. Pal R, Venkataramana NK, Bansal A, Balaraju S, Jan M, Chandra R, et alabama. Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in homo spinal anesthesia cord injury/paraplegia : a fly clinical study. Cytotherapy. 2009 ; 11:897–911 .
  47. 47. Venkataramana NK, Kumar SKV, Balaraju S, Radhakrishnan RC, Bansal A, Dixit A, et alabama. Open-labeled discipline of unilateral autologous bone-marrow-derived mesenchymal stem turn cell transplant in Parkinson ’ south disease. Transl Res. 2010 ; 155:62–70 .
  48. 48. Zhang W, Yan Q, Zeng Y-S, Zhang X-B, Xiong Y, Wang J-M, et alabama. implantation of adult bone marrow-derived mesenchymal stem turn cells transfected with the neurotrophin-3 gene and pretreated with retinoic acerb in wholly transected spinal anesthesia cord. Brain Res. 2010 ; 1359:256–71 .
  49. 49. Gnecchi M, Danieli P, Cervio E. Mesenchymal stem cell therapy for affection disease. Vascul Pharmacol. 2012 ; 57:48–55 .
  50. 50. Madonna R, Rokosh G, De Caterina R, Bolli R. Hepatocyte growth factor/Met gene transfer in cardiac stem turn cells — likely for cardiac haunt. basic Res Cardiol. 2010 ; 105:443–52 .
  51. 51. Pittenger MF, Martin BJ. Mesenchymal stem turn cells and their potential as cardiac therapeutics. Circ Res. 2004 ; 95:9–20 .
  52. 52. Tomita S, Li R-K, Weisel RD, Mickle DAG, Kim E-J, Sakai T, et aluminum. autologous transplant of bone marrow cells improves damage kernel serve. circulation. 1999 ; 100 : II–247–56 .
  53. 53. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanism in pornographic root cellular telephone signaling and therapy. Circ Res. 2008 ; 103:1204–19 .
  54. 54. Jiang Z, Hu X, Yu H, Xu Y, Wang L, Chen H, et alabama. Human endometrial stem cells confer enhanced myocardial salvage and regeneration by paracrine mechanisms. J Cell Mol Med. 2013 ; 17:1247–60 .
  55. 55. Li B, Zeng Q, Wang H, Shao S, Mao X, Zhang F, et alabama. Adipose weave stromal cells transplant in rats of acute myocardial infarct. Coron Artery Dis. 2007 ; 18:221–7 .
  56. 56. Sadat S, Gehmert S, Song Y-H, Yen Y, Bai X, Gaiser S, et alabama. The cardioprotective effect of mesenchymal shank cells is mediated by IGF-I and VEGF. Biochem Biophys Res Commun. 2007 ; 363:674–9 .
  57. 57. Madonna R, Geng Y-J, Caterina RD. Adipose tissue-derived root cells word picture and likely for cardiovascular rectify. Arterioscler Thromb Vasc Biol. 2009 ; 29:1723–9 .
  58. 58. Nagaya N, Fujii T, Iwase T, Ohgushi H, Itoh T, Uematsu M, et aluminum. intravenous administration of mesenchymal stem turn cells improves cardiac affair in rats with acute accent myocardial infarct through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol. 2004 ; 287 : H2670–6 .
  59. 59. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, et aluminum. secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. circulation. 2004 ; 109:1292–8 .
  60. 60. Schenke-Layland K, Strem BM, Jordan MC, DeEmedio MT, Hedrick MH, Roos KP, et aluminum. Adipose tissue-derived cells improve cardiac function following myocardial infarct. J Surg Res. 2009 ; 153:217–23 .
  61. 61. Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, et alabama. Monolayered mesenchymal bow cells repair scarred myocardium after myocardial infarct. Nat Med. 2006 ; 12:459–65 .
  62. 62. Uemura R, Xu M, Ahmad N, Ashraf M. Bone kernel stem turn cells prevent left ventricular recast of ischemic heart through paracrine bespeak. Circ Res. 2006 ; 98:1414–21 .
  63. 63. Bai X, Alt E. Myocardial regeneration likely of adipose tissue-derived shank cells. Biochem Biophys Res Commun. 2010 ; 401:321–6 .
  64. 64. Bai X, Yan Y, Song Y-H, Seidensticker M, Rabinovich B, Metzele R, et alabama. Both civilized and impertinently isolated adipose tissue-derived stem cells enhance cardiac serve after acute accent myocardial infarct. Eur Heart J. 2010 ; 31:489–501 .
  65. 65. Gao F, He T, Wang H, Yu S, Yi D, Liu W, et alabama. A promise strategy for the treatment of ischemic kernel disease : mesenchymal bow cell-mediated vascular endothelial growth divisor gene transfer in rats. Can J Cardiol. 2007 ; 23:891–8 .
  66. 66. Deuse T, Peter C, Fedak PWM, Doyle T, Reichenspurner H, Zimmermann WH, et alabama. Hepatocyte growth agent or vascular endothelial growth factor gene transfer maximizes mesenchymal stem cell-based myocardial salvage after acute myocardial infarct. circulation. 2009 ; 120 : S247–254 .
  67. 67. Sun L, Cui M, Wang Z, Feng X, Mao J, Chen P, et aluminum. Mesenchymal stem cells modified with angiopoietin-1 better recast in a rat model of acute myocardial infarct. Biochem Biophys Res Commun. 2007 ; 357:779–84 .
  68. 68. Gnecchi M, He H, Melo LG, Noiseaux N, Morello F, de Boer RA, et alabama. early beneficial effects of bone marrow-derived mesenchymal stem cells overexpressing Akt on cardiac metabolism after myocardial infarct. Stem Cells. 2009 ; 27:971–9 .
  69. 69. Zhang D, Fan G-C, Zhou X, Zhao T, Pasha Z, Xu M, et aluminum. Over-expression of CXCR4 on mesenchymal bow cells augments myoangiogenesis in the infarcted myocardium. J Mol Cell Cardiol. 2008 ; 44:281–92 .
  70. 70. Kearns-Jonker M, Dai W, Gunthart M, Fuentes T, Yeh H-Y, Gerczuk P, Pera M, Mummery C, Kloner RA. genetically engineered mesenchymal root cells influence gene expression in donor cardiomyocytes and the recipient role center. J Stem Cell Res Ther. 2012 ; S1 .
  71. 71. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, et aluminum. intravenous hMSCs improve myocardial infarct in mouse because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 2009 ; 5:54–63 .
  72. 72. Sousa BR, Parreira RC, Fonseca EA, Amaya MJ, Tonelli FMP, Lacerda SMSN, et aluminum. Human adult bow cells from divers origins : an overview from multiparametric immunophenotyping to clinical applications. Cytometry A. 2014 ; 85:43–77 .
  73. 73. Chen S, Fang W, Qian J, Ye F, Liu Y, Shan S, et alabama. improvement of cardiac function after transplant of autologous bone kernel mesenchymal stalk cells in patients with acuate myocardial infarct. Chin Med J ( Engl ). 2004 ; 117:1443–8 .
  74. 74. Friis T, Haack-Sørensen M, Mathiasen AB, Ripa RS, Kristoffersen US, Jørgensen E, et aluminum. Mesenchymal stromal cell derived endothelial progenitor treatment in patients with fractious angina pectoris. Scand Cardiovasc J. 2011 ; 45:161–8 .
  75. 75. Mohyeddin-Bonab M, Mohamad-Hassani M-R, Alimoghaddam K, Sanatkar M, Gasemi M, Mirkhani H, et alabama. autologous in vitro expanded mesenchymal stalk cell therapy for human old myocardial infarct. Arch Iran Med. 2007 ; 10:467–73 .
  76. 76. Williams AR, Trachtenberg B, Velazquez DL, McNiece I, Altman P, Rouy D, et alabama. Intramyocardial bow cell injection in patients with ischemic cardiomyopathy : functional recovery and inverse recast. Circ Res. 2011 ; 108:792–6 .
  77. 77. Moodley Y, Atienza D, Manuelpillai U, Samuel CS, Tchongue J, Ilancheran S, et aluminum. Human umbilical cord cord mesenchymal shank cells reduce fibrosis of bleomycin-induced lung injury. Am J Pathol. 2009 ; 175:303–13 .
  78. 78. Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, et alabama. Mesenchymal root cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A. 2003 ; 100:8407–11 .
  79. 79. Rojas M, Xu J, Woods CR, Mora AL, Spears W, Roman J, et alabama. Bone marrow-derived mesenchymal stem cells in compensate of the hurt lung. Am J Respir Cell Mol Biol. 2005 ; 33:145–52 .
  80. 80. Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA. intrapulmonary rescue of bone marrow-derived mesenchy
    mal bow cells improves survival and attenuates endotoxin-induced acute accent lung injury in mouse. J Immunol. 2007 ; 179:1855–63 .
  81. 81. Zhen G, Liu H, Gu N, Zhang H, Xu Y, Zhang Z. Mesenchymal stem cells transplant protects against informer pneumonic emphysema. Front Biosci J Virtual Libr. 2008 ; 13:3415–22 .
  82. 82. Akram KM, Samad S, Spiteri MA, Forsyth NR. Mesenchymal shank cells promote alveolar epithelial cell wound repair in vitro through clear-cut migrant and paracrine mechanisms. Respir Res. 2013 ; 14:9 .
  83. 83. Manning E, Pham S, Li S, Vazquez-Padron RI, Mathew J, Ruiz P, et aluminum. Interleukin-10 delivery via mesenchymal shank cells : a novel gene therapy overture to prevent lung ischemia-reperfusion injury. Hum Gene Ther. 2010 ; 21:713–27 .
  84. 84. Mei SHJ, McCarter SD, Deng Y, Parker CH, Liles WC, Stewart DJ. prevention of LPS-induced acute lung injury in mouse by mesenchymal stem turn cells overexpressing angiopoietin 1. PLoS Med. 2007 ; 4, e269 .
  85. 85. Xu J, Qu J, Cao L, Sai Y, Chen C, He L, et alabama. Mesenchymal root cell-based angiopoietin-1 gene therapy for acute lung wound induced by lipopolysaccharide in mouse. J Pathol. 2008 ; 214:472–81 .
  86. 86. O ’ Reilly M, Thébaud B. The promise of stalk cells in bronchopulmonary dysplasia. Semin Perinatol. 2013 ; 37:79–84 .
  87. 87. Tropea KA, Leder E, Aslam M, Lau AN, Raiser DM, Lee J-H, et alabama. Bronchioalveolar stem cells addition after mesenchymal stromal cell discussion in a mouse exemplar of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2012 ; 302 : L829–837 .
  88. 88. Zhu Y, Feng X, Abbott J, Fang X, Hao Q, Monsel A, et alabama. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mouse. Stem Cells. 2014 ; 32:116–25 .
  89. 89. Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Konstantinou G, et alabama. Exosomes mediate the cytoprotective carry through of mesenchymal stromal cells on hypoxia-induced pneumonic high blood pressure. circulation. 2012 ; 126:2601–11.
  90. 90. Puglisi MA, Tesori V, Lattanzi W, Piscaglia AC, Gasbarrini GB, D ’ Ugo DM, et alabama. therapeutic implications of mesenchymal stem cells in liver wound. BioMed Res Int. 2011 ; 2011:860578 .
  91. 91. Meier RPH, Müller YD, Morel P, Gonelle-Gispert C, Bühler LH. transplant of mesenchymal stalk cells for the treatment of liver diseases, is there enough testify ? Stem Cell Res. 2013 ; 11:1348–64 .
  92. 92. Prasajak P. Mesenchymal stem cells : current clinical applications and therapeutic electric potential in liver diseases. J Bone Marrow Res. 2014 ; 02:1–9 .
  93. 93. Kharaziha P, Hellström PM, Noorinayer B, Farzaneh F, Aghajani K, Jafari F, et alabama. improvement of liver serve in liver cirrhosis patients after autologous mesenchymal stem cell injection : a phase I-II clinical trial. Eur J Gastroenterol Hepatol. 2009 ; 21:1199–205 .
  94. 94. Mohamadnejad M, Alimoghaddam K, Mohyeddin-Bonab M, Bagheri M, Bashtar M, Ghanaati H, et aluminum. Phase 1 trial of autologous bone marrow mesenchymal stem turn cell transplant in patients with decompensated liver cirrhosis. Arch Iran Med. 2007 ; 10:459–66 .
  95. 95. Zhang Z, Lin H, Shi M, Xu R, Fu J, Lv J, et alabama. Human umbilical cord mesenchymal stem cells improve liver-colored routine and ascites in decompensated liver-colored cirrhosis patients. J Gastroenterol Hepatol. 2012 ; 27:112–20 .
  96. 96. Li Q, Zhou X, Shi Y, Li J, Zheng L, Cui L, et alabama. In vivo chase and comparison of the curative effects of MSCs and HSCs for liver wound. PLoS One. 2013 ; 8, e62363 .
  97. 97. Du Z, Wei C, Yan J, Han B, Zhang M, Peng C, et alabama. Mesenchymal stalk cells overexpressing C-X-C chemokine sense organ type 4 improve early liver regeneration of small-for-size liver grafts. Liver Transpl. 2013 ; 19:215–25 .
  98. 98. Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Osaki M, et aluminum. Rapid liverwort destiny specification of adipose-derived bow cells and their remedy potential for liver-colored bankruptcy. J Gastroenterol Hepatol. 2009 ; 24:70–7 .
  99. 99. di Bonzo LV, Ferrero I, Cravanzola C, Mareschi K, Rustichell D, Novo E, et aluminum. Human mesenchymal bow cells as a two-edged sword in hepatic regenerative medicine : engraftment and hepatocyte differentiation versus profibrogenic electric potential. Gut. 2008 ; 57:223–31 .
  100. 100. Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Osaki M, et alabama. IFATS Collection : in vivo curative electric potential of human adipose weave mesenchymal stem turn cells after transplant into mouse with liver injury. Stem Cells. 2008 ; 26:2705–12 .
  101. 101. Kanazawa H, Fujimoto Y, Teratani T, Iwasaki J, Kasahara N, Negishi K, et alabama. Bone marrow-derived mesenchymal shank cells ameliorate hepatic ischemia reperfusion injury in a rat model. PLoS One. 2011 ; 6, e19195 .
  102. 102. Lin N, Hu K, Chen S, Xie S, Tang Z, Lin J, et alabama. Nerve emergence factor-mediated paracrine regulation of liverwort radial cells by multipotent mesenchymal stromal cells. Life Sci. 2009 ; 85:291–5 .
  103. 103. Parekkadan B, van Poll D, Suganuma K, Carter EA, Berthiaume F, Tilles AW, et aluminum. Mesenchymal stalk cell-derived molecules reverse fulminant liverwort failure. PLoS One. 2007 ; 2, e941 .
  104. 104. Yan Y, Xu W, Qian H, Si Y, Zhu W, Cao H, et aluminum. Mesenchymal stalk cells from human umbilical cords ameliorate sneak hepatic injury in vivo. Liver Int. 2009 ; 29:356–65 .
  105. 105. Ishikawa H, Jo J-I, Tabata Y. Liver anti-fibrosis therapy with mesenchymal bow cells secreting hepatocyte growth divisor. J Biomater Sci Polym Ed. 2012 ; 23:2259–72 .
  106. 106. Higashiyama R, Inagaki Y, Hong YY, Kushida M, Nakao S, Niioka M, et aluminum. Bone marrow–derived cells express matrix metall
    oproteinases and lend to regression of liver fibrosis in mouse. Hepatology. 2007 ; 45:213–22 .
  107. 107. Xagorari A, Siotou E, Yiangou M, Tsolaki E, Bougiouklis D, Sakkas L, et aluminum. protective effect of mesenchymal shank cell-conditioned medium on liverwort cell apoptosis after acute liver injury. Int J Clin Exp Pathol. 2013 ; 6:831–40 .
  108. 108. Cho K, Woo S, Seoh J, Han H, Ryu K. Mesenchymal stem turn cells restore CCl4-induced liver injury by an antioxidative serve. Cell Biol Int. 2012 ; 36:1267–74 .
  109. 109. Li H, Zhang B, Lu Y, Jorgensen M, Petersen B, Song S. Adipose tissue-derived mesenchymal stem cell-based liver-colored gene delivery. J Hepatol. 2011 ; 54:930–8 .
  110. 110. Tsai P-C, Fu T-W, Chen Y-MA, Ko T-L, Chen T-H, Shih Y-H, et alabama. The therapeutic electric potential of human umbilical cord mesenchymal stem cells from Wharton ’ s gelatin in the discussion of rat liver fibrosis. Liver Transpl. 2009 ; 15:484–95 .
  111. 111. Tan CY, Lai RC, Wong W, Dan YY, Lim S-K, Ho HK. Mesenchymal root cell-derived exosomes promote liverwort re-formation in drug-induced liver injury models. Stem Cell Res Ther. 2014 ; 5:76 .
  112. 112. Li T, Yan Y, Wang B, Qian H, Zhang X, Shen L, et alabama. Exosomes derived from human umbilical cord cord mesenchymal stalk cells alleviate liver-colored fibrosis. Stem Cells Dev. 2013 ; 22:845–54 .
  113. 113. Chhabra P, Brayman KL. Stem cell therapy to cure character 1 diabetes : from hype to hope. Stem Cells Transl Med. 2013 ; 2:328–36 .
  114. 114. Liu M, Han ZC. Mesenchymal stem cells : biology and clinical potential in type 1 diabetes therapy. J Cell Mol Med. 2008 ; 12:1155–68 .
  115. 115. Lysy PA, Weir GC, Bonner-Weir S. Concise review : pancreas regeneration : recent advances and perspectives. Stem Cells Transl Med. 2012 ; 1:150–9 .
  116. 116. Carlsson P-O, Schwarcz E, Korsgren O, Le Blanc K. Preserved β-cell function in type 1 diabetes by mesenchymal stromal cells. Diabetes. 2015 ; 64:587–92 .
  117. 117. Boumaza I, Srinivasan S, Witt WT, Feghali-Bostwick C, Dai Y, Garcia-Ocana A, et alabama. autologous bone marrow-derived rat mesenchymal shank cells promote PDX-1 and insulin expression in the islets, change T cell cytokine convention and preserve regulative T cells in the periphery and induce sustained normoglycemia. J Autoimmun. 2009 ; 32:33–42 .
  118. 118. Ezquer F, Ezquer M, Contador D, Ricca M, Simon V, Conget P. The antidiabetic effect of mesenchymal shank cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment. Stem Cells. 2012 ; 30:1664–74 .
  119. 119. Jurewicz M, Yang S, Augello A, Godwin JG, Moore RF, Azzi J, et alabama. Congenic mesenchymal bow cell therapy reverses hyperglycemia in experimental character 1 diabetes. Diabetes. 2010 ; 59:3139–47 .
  120. 120. Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD, et alabama. Multipotent stromal cells from homo marrow home to and promote repair of pancreatic islets and nephritic glomerulus in diabetic NOD/scid mouse. Proc Natl Acad Sci U S A. 2006 ; 103:17438–43 .
  121. 121. Phadnis SM, Joglekar MV, Dalvi MP, Muthyala S, Nair PD, Ghaskadbi SM, et alabama. Human bone marrow-derived mesenchymal cells differentiate and suppurate into hormone pancreatic linage in vivo. Cytotherapy. 2011 ; 13:279–93 .
  122. 122. Davis NE, Hamilton D, Fontaine MJ. Harnessing the immunomodulatory and tissue repair properties of mesenchymal stem cells to restore β cell function. Curr Diab Rep. 2012 ; 12:612–22 .
  123. 123. Gao X, Song L, Shen K, Wang H, Qian M, Niu W, et alabama. Bone kernel mesenchymal stem cells promote the animate of islets from diabetic mice through paracrine actions. Mol Cell Endocrinol. 2014 ; 388:41–50 .
  124. 124. Fiorina P, Jurewicz M, Augello A, Vergani A, Dada S, La Rosa S, et alabama. Immunomodulatory officiate of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J Immunol. 2009 ; 183:993–1004 .
  125. 125. Favaro E, Carpanetto A, Lamorte S, Fusco A, Caorsi C, Deregibus MC, et aluminum. Human mesenchymal shank cell-derived microvesicles modulate T cellular telephone response to islet antigen glutamic acid decarboxylase in patients with type 1 diabetes. Diabetologia. 2014 ; 57:1664–73 .
  126. 126. Limbert C, Päth G, Ebert R, Rothhammer V, Kassem M, Jakob F, et alabama. PDX1- and NGN3-mediated in vitro reprogramming of human bone marrow-derived mesenchymal stromal cells into pancreatic endocrine lineages. Cytotherapy. 2011 ; 13:802–13 .
  127. 127. Moriscot C, de Fraipont F, Richard M-J, Marchand M, Savatier P, Bosco D, et aluminum. Human bone kernel mesenchymal stem cells can express insulin and key recording factors of the hormone pancreas developmental pathway upon genic and/or microenvironmental handling in vitro. Stem Cells. 2005 ; 23:594–603 .
  128. 128. Chen NKF, Tan SY, Udolph G, Kon OL. Insulin expressed from endogenously active glucose-responsive EGR1 showman in bone marrow mesenchymal stromal cells as diabetes therapy. Gene Ther. 2010 ; 17:592–605 .
  129. 129. Mundra V, Wu H, Mahato RI. Genetically modified human bone marrow derived mesenchymal shank cells for improving the consequence of human isle transplant. PLoS One. 2013 ; 8, e77591 .
  130. 130. Wu H, Lu W, Mahato RI. Mesenchymal stem cells as a gene pitch vehicle for successful isle transplant. Pharm Res. 2011 ; 28:2098–109 .
  131. 131. Si Y, Zhao Y, Hao H, Liu J, Guo Y, Mu Y, et aluminum. infusion of mesenchymal stem turn cells ameliorates hyperglycemia in character 2 diabetic rats : recognition of a novel function in improving insulin sensitivity. Diabetes. 2012 ; 61:1616–25 .
  132. 132. Liu X, Zheng P, Wang X, Dai G, Cheng H, Zhang Z, et aluminum. A preliminary evaluation of efficacy and base hit of Wharton ’ s jellify mesenchymal stalk cell transplant in patients with type 2 diabetes mellitus. Stem Cell Res Ther. 2014 ; 5:57 .
  133. 133. Jung KH, Song SU, Yi T, Jeon M, Hong S, Zheng H, et aluminum. Human bone marrow–derived clonal
    mesenchymal stem cells inhibit ignition and reduce acute pancreatitis in rats. Gastroenterology. 2011 ; 140:998–1008.e4 .
  134. 134. Reinders ME, Fibbe WE, Rabelink TJ. Multipotent mesenchymal stromal cell therapy in nephritic disease and kidney transplant. Nephrol Dial Transplant. 2010 ; 25:17–24 .
  135. 135. Burton CJ, Combe C, Walls J, Harris KP. secretion of chemokines and cytokines by human tubular epithelial cells in reaction to proteins. Nephrol Dial Transplant. 1999 ; 14:2628–33 .
  136. 136. Tögel F, Isaac J, Hu Z, Weiss K, Westenfelder C. Renal SDF-1 signals mobilization and home of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int. 2005 ; 67:1772–84 .
  137. 137. Herrera MB, Bussolati B, Bruno S, Morando L, Mauriello-Romanazzi G, Sanavio F, et aluminum. exogenous mesenchymal bow cells localize to the kidney by means of CD44 following acute tubular wound. Kidney Int. 2007 ; 72:430–41 .
  138. 138. Chen J, Park H-C, Addabbo F, Ni J, Pelger E, Li H, et alabama. Kidney-derived mesenchymal stem cells contribute to vasculogenesis, angiogenesis and endothelial repair. Kidney Int. 2008 ; 74:879–89 .
  139. 139. Tögel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C. Administered mesenchymal stalk cells protect against ischemic acute nephritic bankruptcy through differentiation-independent mechanisms. Am J Physiol Ren Physiol. 2005 ; 289 : F31–42 .
  140. 140. Xing L, Cui R, Peng L, Ma J, Chen X, Xie R-J, et alabama. Mesenchymal stem cells, not conditioned medium, lend to kidney animate after ischemia-reperfusion injury. Stem Cell Res Ther. 2014 ; 5:101 .
  141. 141. Westenfelder C, Tögel FE. protective actions of administered mesenchymal stem turn cells in acute kidney injury : relevance to clinical trials. Kidney Int Suppl. 2011 ; 1:103–6 .
  142. 142. Bianchi F, Sala E, Donadei C, Capelli I, La Manna G. Potential advantages of acute kidney injury management by mesenchymal root cells. World J Stem Cells. 2014 ; 6:644–50 .
  143. 143. Imberti B, Morigi M, Tomasoni S, Rota C, Corna D, Longaretti L, et alabama. Insulin-like increase factor-1 sustains stem cell–mediated nephritic repair. J Am Soc Nephrol. 2007 ; 18:2921–8 .
  144. 144. Bi B, Schmitt R, Israilova M, Nishio H, Cantley LG. Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol. 2007 ; 18:2486–96 .
  145. 145. Hopkins C, Li J, Rae F, Little M. Stem cellular telephone options for kidney disease. J Pathol. 2009 ; 217:265–81 .
  146. 146. Kucic T, Copland IB, Cuerquis J, Coutu DL, Chalifour LE, Gagnon RF, et aluminum. Mesenchymal stromal cells genetically engineered to overexpress IGF-I enhance cell-based gene therapy of nephritic failure-induced anemia. Am J Physiol Renal Physiol. 2008 ; 295 : F488–496 .
  147. 147. Zhen-Qiang F, Bing-Wei Y, Yong-Liang L, Xiang-Wei W, Shan-Hong Y, Yuan-Ning Z, et alabama. Localized expression of human BMP-7 by BM-MSCs enhances nephritic rectify in an in vivo model of ischemia-reperfusion injury. Genes Cells. 2012 ; 17:53–64 .
  148. 148. Morigi M, Rota C, Montemurro T, Montelatici E, Lo Cicero V, Imberti B, et aluminum. Life-sparing effect of human cord blood-mesenchymal stem cells in experimental acute accent kidney injury. Stem Cells. 2010 ; 28:513–22 .
  149. 149. Hagiwara M, Shen B, Chao L, Chao J. Kallikrein-modified mesenchymal stem cell implantation provides enhanced protection against acute ischemic kidney injury by inhibiting apoptosis and inflammation. Hum Gene Ther. 2008 ; 19:807–19 .
  150. 150. Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, et aluminum. Mesenchymal stem cell-derived microvesicles protect against acuate tubular injury. J Am Soc Nephrol. 2009 ; 20:1053–67 .
  151. 151. Gatti S, Bruno S, Deregibus MC, Sordi A, Cantaluppi V, Tetta C, et aluminum. Microvesicles derived from human pornographic mesenchymal bow cells protect against ischaemia–reperfusion-induced acuate and chronic kidney injury. Nephrol Dial Transplant. 2011 ; 26:1474–83 .
  152. 152. Bruno S, Grange C, Collino F, Deregibus MC, Cantaluppi V, Biancone L, et aluminum. Microvesicles derived from mesenchymal stem cells enhance survival in a deadly model of acute kidney injury. PLoS One. 2012 ; 7, e33115 .
  153. 153. Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y, et aluminum. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced nephritic oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther. 2013 ; 4:34 .
  154. 154. Franceschi RT, Yang S, Rutherford RB, Krebsbach PH, Zhao M, Wang D. Gene therapy approaches for bone regeneration. Cells Tissues Organs. 2004 ; 176:95–108 .
  155. 155. Liu J, Chen W, Zhao Z, Xu HHK. Reprogramming of mesenchymal bow cells derived from iPSCs seeded on biofunctionalized calcium phosphate scaffold for bone mastermind. Biomaterials. 2013 ; 34:7862–72 .
  156. 156. Jethva R, Otsuru S, Dominici M, Horwitz EM. Cell therapy for disorders of bone. Cytotherapy. 2009 ; 11:3–17 .
  157. 157. Marolt D, Knezevic M, Novakovic GV. Bone tissue engineering with human stem cells. Stem Cell Res Ther. 2010 ; 1:10 .
  158. 158. Xiao Y, Mareddy S, Crawford R. Clonal portrayal of bone marrow derived stem cells and their application for bone positive feedback. Int J Oral Sci. 2010 ; 2:127–35 .
  159. 159. Wang EA, Rosen V, D ’ Alessandro JS, Bauduy M, Cordes P, Harada T, et alabama. recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci U S A. 1990 ; 87:2220–4 .
  160. 160. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, et alabama. novel regulators of bone formation : molecular clones and activities. skill. 1988 ; 242:1528–34 .
  161. 161. Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors. 2004 ; 22:233–41 .
  162. 162. Hong D, Chen H-X, Ge R, Li J-C. genetically engineered mesenchymal shank cells : the ongoing research for
    bone tissue mastermind. Anat Rec Hoboken 2007. 2010 ; 293:531–7 .
  163. 163. Candini O, Spano C, Murgia A, Grisendi G, Veronesi E, Piccinno MS, et aluminum. Mesenchymal progenitors aging highlights a miR-196 switch targeting HOXB7 as master regulator of proliferation and osteogenesis. Stem Cells. 2015 ; 33:939–50 .
  164. 164. Otsuru S, Gordon PL, Shimono K, Jethva R, Marino R, Phillips CL, et alabama. Transplanted bone marrow mononuclear cells and MSCs impart clinical benefit to children with osteogenesis imperfecta through different mechanisms. Blood. 2012 ; 120:1933–41 .
  165. 165. Gómez-Barrena E, Rosset P, Müller I, Giordano R, Bunu C, Layrolle P, et alabama. Bone regeneration : shank cell therapies and clinical studies in orthopaedics and traumatology. J Cell Mol Med. 2011 ; 15:1266–86 .
  166. 166. Qin Y, Guan J, Zhang C. Mesenchymal bow cells : mechanisms and role in bone positive feedback. Postgrad Med J. 2014 ; 90:643–7 .
  167. 167. O ’ Driscoll SW. The bring around and re-formation of articular cartilage. J Bone Joint Surg Am. 1998 ; 80:1795–812 .
  168. 168. Augello A, Tasso R, Negrini SM, Cancedda R, Pennesi G. Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents weave damage in collagen-induced arthritis. Arthritis Rheum. 2007 ; 56:1175–86 .
  169. 169. Kastrinaki M-C, Papadaki H. Mesenchymal stromal cells in arthritic arthritis : biological properties and clinical applications. Curr Stem Cell Res Ther. 2009 ; 4:61–9 .
  170. 170. Greish S. Human umbilical cord cord mesenchymal bow cells as treatment of accessory arthritic arthritis in a fink model. World J Stem Cells. 2012 ; 4:101 .
  171. 171. Mao F, Xu W-R, Qian H, Zhu W, Yan Y-M, Shao Q-X, et alabama. immunosuppressant effects of mesenchymal stem cells in collagen-induced mouse arthritis. Inflamm Res. 2010 ; 59:219–25 .
  172. 172. Norambuena GA, Khoury M, Jorgensen C. Mesenchymal stem turn cells in osteoarticular pediatric diseases : an update. Pediatr Res. 2012 ; 71:452–8 .
  173. 173. Wakitani S, Okabe T, Horibe S, Mitsuoka T, Saito M, Koyama T, et alabama. base hit of autologous cram marrow-derived mesenchymal stem cell transplant for cartilage haunt in 41 patients with 45 joints followed for up to 11 years and 5 months. J Tissue Eng Regen Med. 2011 ; 5:146–50 .
  174. 174. Davatchi F, Abdollahi BS, Mohyeddin M, Shahram F, Nikbin B. Mesenchymal stem cell therapy for stifle osteoarthritis. preliminary report of four patients. Int J Rheum Dis. 2011 ; 14:211–5 .
  175. 175. Davatchi F, Sadeghi Abdollahi B, Mohyeddin M, Nikbin B : Mesenchymal stalk cell therapy for stifle osteoarthritis : 5 years follow-up of three patients. Int J Rheum Dis. 2015. department of the interior : 10.1111/1756-185X.12670. [ Epub ahead of print ] .
  176. 176.

    Madry H, Cucchiarini M. Clinical potential and challenges of using genetically modified cells for articular cartilage animate. Croat Med J. 2011 ; 52:245–61 .

  177. 177. Steinert AF, Nöth U, Tuan RS. Concepts in gene therapy for cartilage animate. Injury. 2008 ; 39 : S97–113 .
reservoir : https://enrolldetroit.org
Category : Education

Trả lời

Email của bạn sẽ không được hiển thị công khai.